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Abstract. The quantum-statistical model (OSM) is studied by calculating various atomic 
parameters near the normal state and beyond it. It is shown from the results of this work that 
the strength parameter controlling the Kirzhnitz-Weizsacker gradient term isequal toft only 
for extremely high atomic electron densities exceeding 60 k3. Below this limit, due to the 
variational principle, this parameter may acquire other values. It is shown, by means of a 
semi-empirical approach, that a value of 4 for this parameter provides calculated atomic 
binding energies as close as 0.5% of the experimental ones for the first 28 elements. At the 
same time the classical Weizsacker value of unity was found not to be able to reproduce 
accurately any useful property of solid matter. A numerical procedure is also presented for 
the calculation of the equation-of-state (EOS) at zero temperature which may be easily 
generalised to give all the finite temperature effects accurately. 

1. Introduction 

For the past several decades there has been considerable discussion in the physics 
community as to whether the statistical Thomas-Fermi (TF) [l, 21 and Thomas-Fermi- 
Dirac (TFD) [3] models, including gradient terms of the Weizsacker type [4], are able to 
reproduce important atomic parameters accurately, notably the atomic binding energy, 
by describing the many-particle system solely by means of the electron density and 
without making any reference to individual electron wavefunctions [5-81. This debate 
was motivated mainly by the widespread use of these models in various fields of physics 
[9-111, because of the simplicity of their formulation which is to some extent in contrast 
to the situation of the detailed configuration-type theories. 

The gradient correction to the statistical kinetic energy is written in the following 
form: 

E ,  = /zx - ( - )  h2 Vn n ( r )d3 r  
8 m n  

where n(r)  is the inhomogeneous electron density inside the atom. Von Weizsacker [4], 
who first suggested the addition of this term, performed the calculation of the binding 
energies for the triad of elements 0, MO and Hg making the explicit choice of 0 equal 
to unity. The results obtained were more than 3% above the experimental values, which 
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at that time was taken to be a great success considering the poor accuracy with which 
the experimental results were then known. However, as more accurate values became 
available [12] the discrepancies were seen to be more evident. A further difficulty to this 
theory became evident when perturbation theories [ 13-15] showed in different ways 
that the expansion of the Hamiltonian operator in powers of R leads to a second order 
gradient correction of the type of equation (1) where CJ was predicted to be nine times 
smaller than Weizsacker’s original value. Those who criticised this last approach could 
argue then [5,7] that being (1) a positive correction to a negative binding energy quantity, 
Weizsacker‘s value of 0 could therefore give an upper bound to the cxact energy and 
consequently alower value of this parameter would not be able to improve the agreement 
with experiment. As a matter of fact, one has to view these earlier computations of 
binding energies based on equation (1) with a certain degree of caution. The most 
interesting feature of introducing the correction (1) to the Hamiltonian operator is given 
by the fact that it produces a finite electron density near the nucleus [16], but it is quite 
uncertain whether this condition prevailed in the above mentioned calculations. In 
addition, equation (1) becomes divergent near the nucleus and it is therefore necessary 
to adopt ad-hoc procedures in order to provide a finite result [17]. 

A sounder approach to the solution of this problem was first proposed by Kalitkin 
and Kuz’mina [18] in 1972 and it took the form of resolving directly the fourth order 
differential energy equation (even though not in its complete form) by means of numeri- 
cal methods. They called their method the quantum statistical model (QSM). Later on, 
More [19] gave a more theoretical foundation to his model and Perrot [20] studied 
approximate solutions to the generalised finite temperature equations. Very recently 
new research has been published [21,22], treating some relevant topics connected with 
the Weizsacker correction though not using the QSM formalism. However, in our opinion 
the question posed at the beginning of this paper has not been adequately answered to 
date. Since it has recently [23] been shown that the TFD solutions can be reduced from 
their second order form to an iterative single integral representation with a straight- 
forward numerical solution, a legitimate question then arises: what is the use of sig- 
nificantly increasing the computation time with more complex equations if the changes 
in the results are not significant when compared for example, with fluctuations caused 
by the shell structure effects? It is also still not clear to what extent this model is valid as 
well as the exact nature of the strength parameter 0 in equation (1). 

In this paper we re-examine the correctness of the QSM formalism by calculating 
divers atomic parameters for a large number of elements over a wide range of matter 
densities (we have limited ourselves to the case of zero temperature) and compare them 
either with experimental values or with results obtained from other theories. 

Our work differs from similar studies on this subject [21,24] in the fact that the QSM 
offers a more consistent way of calculating atomic binding energies and it likewise differs 
from Refs. 10 and 25 because we are able to build up EOS tables as well. Finally 
when comparing our calculations with augmented plane wave (APW) band-structure 
computational results found in the SESAME Eos-tables 1261 or with results from the 
augmented spherical wave (ASW) method [22], we did that by stressing the average 
behaviour of the atom pressure rather than the detailed comparison the electron density 
at the nucleus as reported by More [ 191. 

2. The theoretical model 

2.1. Basic equations 
The addition of the von Weizsacker inhomogeneity (1) to the energy equation, within 
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the ion-sphere model (ISM) [ l ]  at the absolute zero temperature, leads to the following 
differential equation for the electron density n(r): 

where V(r)  is the self consistent solution of the Poisson equation 

V2V(r)  = -4nen (3) 
Equation (2) differs from a similar expresion given in Ref. 19, by the factor 

( 4 )  
a In u 

y=,l,. 
which takes into account the dependence of U on the electron density n(r)  (or atomic 
radius). 

As was mentioned in the introduction, equation (2) may be obtained from per- 
turbation theories in which case u = $ and y = 0, but it is also deducible from variational 
principles by minimising the free energy density F [ n ( r ) ] ,  as developed by Kohn and 
Sham [19 ,27] .  This formalism is used to calculate n(r)  in the following way. 

The free energy density is decomposed into the four terms 

where Fk represents the kinetic contributions, F, is the potential energy which accounts 
for the electron-nucleus and electron-electron interaction, F, is the electron exchange 
free energy and F,  is the gradient contribution [see equation (l)]. The expressions 
corresponding to these four terms [ 2 7 , 4 ]  are: 

F ,  = eV(r)n (7 )  
3e2 
4Jd 

F,  = - - [ 3 n 2 n ] 1 / 3 n  

The minimisation of F ,  
S F [ n ( r ) ] / S n ( r )  = 0 

is carried out using equation (6-10) resulting in equation (1). 
The variational method is unaffected by the nature of the gradient parameter cr. It is 

customary to adopt a constant value for this parameter ( y  = 0), but numerical results 
presented and in this paper show that it in fact represents a limiting value corresponding 
to a certain configuration of the atom. Even though the determination of the value B for 
U ,  as given by the perturbation theories, may be questionable one conclusion of these 
models [14] is worth taken into account when trying to fit cr to results of detailed 
configuration models. It is that the gradient expansion gives only a limited representation 
of the atom state since it avoids the singularities of the electronic polarisability as 
expressed in the random phase approximation (RPA) [ 151 theory. 

2.2. Self consistent solutions of the Poisson equation and boundary conditions 

Equation ( 2 )  is a fourth order differential equation requiring four boundary conditions 
to be solved uniquely. Two of these boundary conditions are provided by the ISM 
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configuration. In this model the nucleus together with Z electrons are confined in an ion 
sphere having a radius ro such that 

r G ro = ($mzr)"3 (11) 
Where nl is the total ion density. The first boundarycondition is given by the conservation 
of particles within the ion sphere, i.e., 

Z =  10r"n(r)d ' r  (12) 

We also require the central potential V(r) inside the atom to have a Coulomb like 
character near the nucleus, so that 

rV(r)lr=o = -Ze (13) 
Under the conditions dictated by equations (12) and (13), the self-consistent solution 

of the Poisson equation (3) in the ISM is given by [2] 

where p is the chemical potential which is determined in such a manner that equation 
(12) is observed. Direct differentiation of equation (14) yields 

6V(r) e 
6r  r2 

n(r') d3r '  

i.e., the potential V(r) at r becomes an extremum as a function of the electron density 
and the electron field inside the ion at a distance r of the nucleus is the same as that 
produced by a point charge at the nucleus and equivalent to the charge between the 
distance r and infinity thus assuring the neutrality of the atom in the space outside the 
ion-sphere. It is instructive to point out that conditions (15) and (16) are generally quoted 
in the literature as complementary requisites of the ISM, but the present analysis shows 
that they are a direct consequence of the assumption of a spherical symmetrical Coulomb 
field near the nucleus and the confinement of the atom charge within the limits of the 
ion-sphere. 

In the TF and TFD models (when CJ = 0) the vanishing of the electrical field at the 
boundaries of the atom is equivalent, in virtue of equation (2), to 

This boundary condition is also extended to the QSM [ 181 in order to provide a smooth 
transition between this last model and the TFD theory as CJ approaches zero. 

Finally the fourth and last boundary condition is related to the already mentioned 
are requisite that the QSM electron density should be finite near the nucleus. Expanding 
the Laplacian and gradient terms of equation (2) in spherically symmetric coordinates, 
by taking into account equation (13), this condition is expressed by 

where a. = h2/me2 is the Bohr radius. This condition may also be written in a more 
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convenient form for the present exposition in the following manner. Equation (13)  
ascribes a Coulomb like nature to the potential near the nucleus. Under such conditions 
the electron density varies as given by the TF and TFD theories, i.e., 

nTF(r) = nTFD(r) r-3/2 as r+ o 

the centre of the atom in the QSM configuration is then given by 
Obviously it follows, that a necessary condition to obtain a finite electron density at 

(19) r’ 312 nOSMlr=O = 0 

Equation (18)  is suitable to obtain a finite electron density at the nucleus by means 
of analytical methods, but for use in numerical procedures for the simultaneous solution 
of equation (2) and (14), as explained in Section 3 ,  it is more convenient to use equation 
(19) for the fourth boundary condition. 

2.3. EQS and the virial theorem in QSM 

We may build-up relations between the atomic pressure, energy and volume, i.e., EOS 
by means of the free energy density F a s  given by equations ( 5 )  to (9), using well known 
thermodynamic relations. Thus for the pressure we have [3] 

P =  -($I 
T .  Z 

whereA is the Helmoltz free energy of the atom, the partial differentiation being carried 
out at constant temperature T and particle number Z. Since we are assuming T = 
constant the first condition is fulfilled automatically and as for the second, in the ISM it 
means that the differentiation should be done at the surface of the atom sphere. This 
last condition is a clear consequence of the conservations of particles within the ion- 
sphere [equation (12 ) ] .  In addition, in the ISM the electron gas is uniformally distributed 
along the atom boundaries and the pressure anywhere there will be the same as that 
exerted by a single electron. The Helmholtz free energy for a single electron is F/n and 
it occupies a volume of l /n .  

It follows then, that in terms of the electron density at the atom boundaries, the 
pressure is given by 

As we have not thus far made any explicit assumption as to the values of T ,  this 
formula is of general application in the ISM configuration. Use of equation (21) ,  taking 
into account the boundary conditions given by equations (15) and (17), results in 

The energy E ,  for the case T = 0, is given simply by 
‘0 

E =  E k  + E r  + E ,  + E ,  = \ F d 3 r  (23)  
J o  

where each term on the right side of equation (23)  represents the contribution of the 
volumetric integrals of the respective free energy densities given by equation (6) to 
equation (9). 
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There is an alternative way of expressing the total energy E by means of the virial 
theorem which has been shown to hold for the generalised TF atom [ l ,  21. In the case of 
the QSM, it adopts the form [19,20] 

3 P V = 2 ( E k + E , ) + E r + E , + E c  (24) 
where V = is the atomic volume and E,  is given by [19]. 

For constant U ,  this expression becomes a surface integral by virtue of Gauss’ theorem 
and its value vanishes because of boundary condition (17) ,  but in the general case should 
be taken into account. It follows then that E is also given by 

E = (3PV + E ,  + E ,  - E c ) / 2  

= 3PV - (Ek  + E ,  + E,) 
(26) 

(27) 
The differences between the values calculated for E by means of equations (23) ,  (26) 

and (27) will give an idea of the accuracy of the numerical procedure applied in solving 
the basic equations of Sections 2.1 and the correctness of the results obtained. It can 
incidently be observed that equation (26) is also the average value among all these 
expressions for the atomic energy, and because of that it was adopted for our calculations 
as the representative value of the binding energy of the atom in agreement with earlier 
procedures [3] .  

3. Numerical procedure 

A numerical integration procedure, similar to the one described in Ref. 23, was used to 
integrate equation (13).  In this reference, it was pointed out that the zero order solution 
of equation ( 2 ) ,  i.e., the TF and TFD approximations, were obtained in a straightforward 
and compact way, by an iterative integration of equation (13) from the outer surface of 
the atom in towards the nucleus. The advantage of such amethod is that the temperature 
effects introduced by the Thomas-Fermi distributions [23] are fully taken into account 
instead of carrying out approximate interpolations and fitting of analytical functions as 
done elsewhere [3 ,20] .  

In the TF and TFD models, once given the volume and temperature, the chemical 
potential p is determined self-consistently with equation (11). In the QSM we must add 
two more conditions at the ion-surface, i.e., n’(ro) and n”(ro). The first one is zero 
because of the boundary condition in equation (17) and the last one is determined in 
such a way that a finite electron density at the nucleus is obtained by means of equation 
(19).  This is performed in the following way: Once given ,u and n”(ro), the electron 
density at the atom boundaries n(ro) is obtained as a linear solution of equation ( 2 ) .  
Then it follows that 

n’(r)  = - Ior“ n”(r) d r  (28) 

and 
r o  

n(r)  = n(ro) - I n’(r) d r  
r 
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The quantity n"(r) at an interior layer of the atom is fixed in such a way that after 
being numerically integrated twice, equation (29) gives the same value, within a certain 
degree of accuracy, as that of the local solution of n(r) by equation (2). This procedure 
is then followed up to the centre of the atom. The correctness of the results obtained by 
our method is examined according to the spread of the values calculated for the energy 
by means of the virial theorem (see § 2.3) and the accuracy to which the neutrality 
condition (equation (12)) is approached. For the elementsstudies here, we have inferred 
an error in the determination of binding energies of less than 0.5% based on the error 
given by the virial theorem. 

4. Results 

In order to verify the validity of our representation of the QSM and the method of solving 
its equations, as described in 8 2 and 3 3, we calculated several physical parameters such 
as the atomic binding energies, the pressure of ionisation of the atom, specific volumes 
and cold pressure curves. 

In doing so we have adopted a 'semi-empirical approach', i.e., we have assigned 
different values to a (then y = E, = 0, see equations (4) and (25)) and analysed their 
effect on the computed parameters when compared with experiments or other theor- 
etical estimate. The values of achosen were zero (the TF and TFD theories), one and B, 
as given by the classical Weizsacker (indicated henceforth as TFDW) and the expansion 
theories (QSM). A new value of Q (indicated throughout the paper as present results) was 
also used and this gave the best fit to the experimental atomic binding energies. 

4.1. Computation of atomic binding energies 

In table 1, we summarise the calculations of the atomic binding energy for the first 28 
elements, the experimental values for this parameter may be deduced from published 
data on ionisation potentials [28,29]. Our computations of the atomic binding energies 
were done by looking for the minimum of equation (26) as a function of volume. 
The values obtained with a = Q (present results) show very good agreement with the 
experimental values (to better than 0.5%) and approach them more closely than those 
values given by Barnes et a1 [24] using their so-called quantum and correlation corrected 
Thomas-Fermi-Dirac (QCCTFD) equations and even more closely than the results 
obtained with the shell effect oriented non-relativistic Hartree-Fock-Slater (NR-HFS) 
[30] computations. The computations with U = A, indicated as QSM, show them to be 4- 
9% higher than the experimental values for the range of Z up to 28 while U = 1 gives an 
excessively low estimation. We do not as yet have a theoretical justification for the values 
of CJ = B, but the agreement observed here with experiment may be significant and should 
be taken into account in further investigations with this model. 

4.2. The pressure ionisation of the atom 

The degree of ionisation of the atom is given by the average number of free electrons 
moving within the limits of the atom and having a positive energy state that permits them 
to escape the effects of the central potential. In the average ionisation atom models using 
the Saha rate equations [31], this phenomenon is mainly attributed to thermal excitations 
of the atom though it is generally accepted that at increasing densities the atomic states 
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Table 1. Comparison of binding energies values (eV/atom). 

z TF TFD QSM TFDW Present results QCCTFD" NR-HFS~ Expt.' 

1 20.91880 
2 105.4241 
3 271.5311 
4 531.3043 
5 894.2659 
6 1368.431 
7 1960.795 
8 2677.606 
9 3524.541 

10 4506.818 
11 5629.281 
12 6896.461 
13 8312.618 
14 9881.785 
15 11607.79 
16 13494.29 
17 15544.77 
18 17762.57 
19 20150.92 
20 22712.94 
21 25451.60 
22 28369.80 
23 31470.35 
24 34755.98 
25 38229.33 
26 41892.97 
27 45749.41 
28 49801.08 

28.0775 17.996 16.098 
126.769 86.223 
312.407 221.92 
596.355 432.10 
987.705 729.97 

1494.17 1121.7 
2122.50 1651.1 
2878.78 2214.2 
3768.52 2920.8 
4796.81 3747.8 
5968.39 4703.0 
7287.69 5773.6 
8758.88 6968.4 

10385.9 8319.3 
12172.6 9790.5 
14122.4 11404 
16238.9 13159 
18525.3 15069 
22604.3 17124 
23620.5 19361 
26435.2 21724 
29432.0 24356 
32613.4 26954 
35982.3 29756 
39541.2 32792 
43292.7 35991 
47239.3 39314 
51383.3 42924 

78.464 
202.85 
400.79 
681.48 

1049.6 
1512.6 
2075.1 
2754.8 
3543.8 
4444.7 
5469.2 

4349 6618.0 
5077 7892.2 
6024 9315.5 
7067 10847 
8220 12536 
9504 14387 

10904 16366 
12432 18495 
14096 20784 
15829 23203 
17737 25825 
19729 28549 
21864 31481 
24148 34563 
26566 37835 
29111 41229 

80.497 
206.82 
406.65 
688.97 

1061.1 
1530.0 
2101.2 

3573.2 

18623.0 

78.31327 
196.6371 
387.9084 
655.2258 

1008.971 
1458.183 
2011.968 
2679.202 
3468.920 
4369.695 
5392.822 
6538.176 
781 1.462 
9216.967 

10759.10 
12441.89 
14269.89 
16233.67 
1834 1.09 
20594.90 
23002.3 1 
25568.29 
28295.14 
3 1 187.99 
34249.67 
37484.03 
40895.67 

13.598 
79 .0P 

203.481 
399.139 
670.967 

1030.08 
1486.029 
2043.794 
271 5.795 
351 1.547 
4419.785 
5450.559 
6604.364 
7887.5 13 
9304.609 

10858.034 
12554.488 
14397.5 12 
16379.956 
18506.545 
20782.352 
232 15.894 
25815.084 
28586.426 
3 15 16.672 
34628.701 
3793 1.15 
41389.273 

a Reference 24. 
Reference 30. 
Reference 28,29. 

are shifted into the continuum resulting in the so-called pressure ionisation of the atomic 
shells [32]. The exact evaluation of pressure ionisation is a subject of controversy [33] 
and it is mainly described by phenomenological formulas. The TF model in its different 
versions has nevertheless the rare feature of being able to give a quantitative estimation 
of the degree of ionisation of the atom by counting the number of electrons in the atom 
having a positive energy exceeding the value of the chemical potential on the atom 
boundaries [23]. This feature can be expressed for the generalised temperature case 
[23], which for T = 0 becomes: 

the integration being performed over layers where the integrand gives a real positive 
number. 

As a first consequence of the correlation between Z* and the pressure exerted on 
the atom, one would expect that up to the normal state, where P < 0, Z* should be zero. 
The calculations of equation (30) carried out with the TF and TFD models [23] showed 
that these approximations do not produce the above mentioned effect, even though 
the TFD model by itself introduces a great improvement in this respect over previous 
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Figure 1. Comparison of the cold pressure degree of ionisation of the atom a5 a function of 
the compression according to the different versions of the TF models used in this work for 
the elements (a )  aluminum, ( b )  copper and (c) molybdenum. (PR: present results). 

methods. It is then of interest to elucidate the effect that the QSM introduces in the curves 
of the pressure ionisation. For that purpose we have calculated the average number of 
free electrons for a wide range of compressions for the elements aluminum, copper and 
molybdenum and the results are shown in figures l(a), l (b )  and l(c). The use of B = k 
did not produce a zero degree of ionisation at the normal state for any of the cases 
studied here, while the choice of (J = Q only produced such effect in aluminum. Neither 
parameter gives satisfactory results indicating that, unlike the case of the atomic binding 
energy, the shell effect has more influence in the determination of the pressure ionisation 
of the atom, at least near the crystal state. 

We observe nevertheless that the value of (J= 1 does provide the feature of a 
vanishing Z h  for the normal state for each one of the elements studied in figure 1. We 
consider this fact as rather circumstantial, taking into account the remaining results 
presented in this paper for such a value. However, it does show how sensitively the 
determination of the degree of ionisation of the atom depends on the device of (J. 
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I t  

0 50 
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Figure 2. Atomic radii of the elements as a function of atomic number Z compared with 
computed statistical averages. Experimental values are indicated by open circles; -. TFD 
results; ----, QSM; ----. TFDW results; ---, present results. 

4.3.  Determination of atomic radii 

The atomic volume at which the atom reaches the minimum internal energy, or zero 
pressure also determines the radius of the normal volume, a figure than can be easily 
compared with experiment. In figure 2 are shown the experimental atomic radii as a 
function of Z and they are compared with computed values given by the TFD theory, 
QSM, TFDW and present results. All these calculations are based on different values of CJ 

whose effect is to lower the TFD curve to give better agreement with the experimental 
values. 

It is quite difficult based on the computations of figure 2, to decide which of the two 
values of +, or Q, gives the best result, though a meticulous square fit test would indicate 
some preference for Q. However, it can be stated beyond any doubt that neither the TFD 
nor TFDW calculations give a satisfactory result, especially the last one which falls 
completely out of range of the experimental results. 

4.4 .  Electron pressures and the strength of the gradient contribution 

The experimental and computational evidence brought so far does not show that the 
value of CJ = 4 has any special meaning for the properties of matter near the normal state, 
where the QSM is believed to manifest its greater effect. The fact that perturbation 
theories so consistently predict this value merits some meditation. The common feature 
of these models is the derivation of the correlation (gradient) effects as a component of 
the exchange potential added to the central potential of a uniform non-interacting 
electron gas. The correct functional dependence of the exchange operator leads to the 
assignment of Q for CJ. In addition, if the unperturbed electron gas is restricted to move 
within the limits of the atomic volume, the solution will be self-consistent only if all the 
terms arising from the gradient expansions are taken into account [ 151. The QSM resolves 
the atom equations in a quite different way. The series are truncated at the gradient 
correction, when this last and the exchange term are assumed not to be correlated and 
the equations are then solved self-consistently by producing a finite electron density at 
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Z V ( A 3 )  

Figure 3. Kinetic pressures according to the TF and QSM theories for different values of Z ;  
the broken curve indicates a kinetic pressure curve calculated for Z = 2 with the TFD model 
(U = 0). 

the nucleus. By this procedure the unperturbed density solution ceases to be self- 
consistent since it is subject to the value of the chemical potential which varies for the 
same atomic volume according to the statistical model used. It seems obvious that both 
methods can be correlated only in the high electron density region, when the corrections 
introduced by the exchange-correlation potential are so small that they cannot appre- 
ciably change the distribution of the non-interacting electron gas [15]. A different point 
of view to that presented in Ref. 7 for the illustration of this fact is shown in figure 3. We 
have calculated the TF (kinetic) pressure curves by first omitting and then including the 
exchange-correlation forces for different values of the atomic number Z. The results are 
shown in figure 3 in TF scaled units in order to facilitate the search for the conditions at 
which both computations are equivalent. The pressure obtained by the consideration of 
the exchange-correlation potential was lower than that resulting when they were not 
taken into account (see figure 3). The difference becomes smaller as the volume 
decreases or as Z is increased, i.e., the fact that the comparison between the QSM and 
the perturbation theories is valid at increasing values of the electron density is thus 
numerically confirmed. 

The computations also show that these difference become much smaller as o is 
increased. This fact can be intuitively understood, since as the strength of the gradient 
terms is increased the kinetic energy of the electron gas is also increased (see equation 

The results of figure 3 might suggest that U acquires its lowest value (believed to be 
B) at the border of the atom but it increases near the atom nucleus, as this would improve 
the agreement between the QSM and the gradient expansion theory. This trend is also 

(24)). 
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Figure 4. Relative error of the pressures 
predicted by the various statistical models 
used in our paper with respect to APW 
results as a function of the average atomic 
electron density. The computed curves 

, TFDW; ---. present results. The 
calculations are performed for: ( a )  alumi- 
num, ( b )  copper and (c) molybdenum. 

are: -.-, TF; ---. TFD; -, QSM; 

confirmed by the results on binding energies, shown in table 1. As can be observed, the 
tendency of the present theoretical results is to approach the experimental ones from 
above at low Z ,  and from below at high values of Z .  

Finally, we tried to verify numerically that &is indeed the proper value of (5 to use at 
very high compressions. For this purpose we calculated the pressure curves of the 
elements aluminum, copper and molybdenum and compared them with standard APW 
computations for the same elements [26]. This model has been shown to give results in 
excellent agreement with semi-empirical calculations of cold pressure curves [34] and it 
is believed to provide an accurate standard for the evaluation of statistical models [19]. 
The results of our studies are shown in figure 4 where the relative departure from the 
APW values is plotted against the average atomic electron density, which according to 
what has been mentioned previously, seems to be the most suitable parameter. From 
figure 4(b) and 4(c) which show the computations carried out for copper and mol- 
ybdenum respectively, it is clear that the pressures in the limit are best fitted by U = +, 
but that occurs only at average electron densities beyond 60 k3, where the accuracy of 
the values given by the QSM is better than 1%. Below the above mentioned threshold 
little can be said about the improvements of the QSM since the oscillations around the 
APW values associated with band crossings are so large that they make the differences 
between the different statistical models meaningless. In the case of aluminum (see figure 
4(a)) the data available on APW pressures [26] did not permit a comparison beyond a 
values of 30 k3 for the average atomic electron density. Up to that point data presented 
in figure 4(a) confirmed the trends mentioned above and as for the limiting value of U, 
the results reported by More [ 191 seem to give support to our previous former conclusions 
concerning the best value for 0. 

Another surprising conclusion arising from figure 4, is that even though we have 
extended our calculations to an extremely high electron density, the inaccuracy of the 
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TF model is still high (about 17-20% error) and it is unable in this whole range of 
compressions to approach the average of the oscillations originated in the shell structure 
effect. Under the same conditions, the TFD model gives an error of only 3% and it is able 
to take these oscillations into account. 

5. Conclusions 

The results presented in this paper indicate that the assignment to the gradient parameter 
of a value of 4 as predicted by the perturbation theories is correct only if all the terms of 
the gradient expansion are taken into account. The QSM theory in its actual form gives 
reliable results only at average atomic electron densities above 60 A-3, when shell 
structure effects become negligible. Because of series truncation, the value of U must 
change if we want to accurately reproduce atomic volumetric parameters as com- 
pressions values are decreased as is shown by the results obtained in this work. In this 
context, our fitted value of U = Q is not in contradiction with the value of 4 found by 
Tomishima et a1 [lo] for this same parameter or the value of 1/5.38 advocated by Lieb 
[35] on the basis of theoretical considerations, as these authors have performed their 
calculations for an infinite atomic volume, a fact which further confirms the tendency 
observed in this work of an increasing value of U with increasing atomic volumes. 
Alternatively various authors [7, 10, 191 have expressed the opinion that for a better 
description of the atom properties at zero temperature by means of the QSM theory, a 
dependence of U on the electron density or distance r from the atom nucleus should be 
considered as has been suggested by us in section 4. The exact formulation of U as a 
function of the electron density will not be unique for the reasons mentioned at the 
beginning of these conclusions, but will depend on the optimisation of the physical atom 
properties investigated. It would then be of interest to extend the studies performed 
with the present formulation of the QSM to other atomic parameters near the normal 
state which are in common use. 

The present formulation of the QSM can be easily generalised for the exact com- 
putation of all the finite temperature effects [23], thus permitting the rapid approximate 
computation of EOS and other imortant properties like, e.g. ,  the polarisation shift of 
spectral lines in high density plasma [36, 371. This is still conditional upon a consistent 
formulation of U as a function of electron density and temperature and for this task the 
QSM merits further attention. 
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